Angebote zu "Convergence" (4 Treffer)

Kategorien

Shops

Khan, Murad: Deep Learning: Convergence to Big ...
55,09 € *
ggf. zzgl. Versand

Erscheinungsdatum: 28.01.2019, Medium: Taschenbuch, Einband: Kartoniert / Broschiert, Titel: Deep Learning: Convergence to Big Data Analytics, Auflage: 2019, Autor: Khan, Murad // Jan, Bilal // Farman, Haleem, Verlag: Springer-Verlag GmbH // Springer Singapore, Sprache: Englisch, Schlagworte: Datenverarbeitung // Anwendungen // Allgemein // Informationsmanagement // Datenverschlüsselung // Kryptografie // Algorithmus // Programmieren // EDV // Database // Datenbank // simulation // Informatik // Intelligenz // Künstliche Intelligenz // KI // AI // COMPUTERS // Databases // General // Datenbankprogrammierung // Datenbanken // Computermodellierung und, Rubrik: Informatik, Seiten: 79, Abbildungen: 8 schwarz-weiße und 18 farbige Abbildungen, Bibliographie, Reihe: SpringerBriefs in Computer Science, Informationen: Book, Gewicht: 181 gr, Verkäufer: averdo

Anbieter: averdo
Stand: 02.07.2020
Zum Angebot
Dependence in Probability and Statistics
175,90 CHF *
ggf. zzgl. Versand

This book gives a detailed account of some recent developments in the field of probability and statistics for dependent data. The book covers a wide range of topics from Markov chain theory and weak dependence with an emphasis on some recent developments on dynamical systems, to strong dependence in times series and random fields. A special section is devoted to statistical estimation problems and specific applications. The book is written as a succession of papers by some specialists of the field, alternating general surveys, mostly at a level accessible to graduate students in probability and statistics, and more general research papers mainly suitable to researchers in the field. The first part of the book considers some recent developments on weak dependent time series, including some new results for Markov chains as well as some developments on new notions of weak dependence. This part also intends to fill a gap between the probability and statistical literature and the dynamical system literature. The second part presents some new results on strong dependence with a special emphasis on non-linear processes and random fields currently encountered in applications. Finally, in the last part, some general estimation problems are investigated, ranging from rate of convergence of maximum likelihood estimators to efficient estimation in parametric or non-parametric time series models, with an emphasis on applications with non-stationary data. TOC:Regeneration-based statistics for Harris recurrent Markov chains (Patrice Bertail, Stéphan Clémençon).- Subgeometric ergodicity of Markov chains (Randal Douc, Eric Moulines, Philippe Soulier).- Limit theorems for dependent U-statistics (Herold Dehling).- Recent results on weak dependence for causal sequences. statistical applications to dynamic systems (Clémentine Prieur).- Parametrized Kantorovic-Rubin¿tein theorem and application to the coupling of random variables (Jérôme Dedecker, Clémentine Prieur, Paul Raynaud De Fitte).- Exponential inequalities and estimation of conditional probabilities (V. Maume-Deschamps).- Martingale approximation of non adapted stochastic processes with nonlinear growth of variance (Dalibor Volný).- Almost periodically correlated processes with long memory (Anne Philippe, Donatas Surgailis, Marie-Claude Viano).- Long memory random fields (Frédéric Lavancier).- Long memory in nonlinear processes (Rohit Deo, Mengchen Hsich, Clifford M. Hurvich, Philippe Soulier).- A LARCH (8) vector valued process (Paul Doukhan, Gilles Teyssière, Pablo Winant).- On a Szegö type limit theorem and the asymptotic theory of random sums, integrals and quadratic forms (Florin Avram, Murad S. Taqqu).- Aggregation of doubly stochastic interactive Gaussian processes and Toeplitz forms of U-statistics (Didier Dacunha-Castelle, Lisandro Fermín).- On efficient inference in GARCH processes (Christian Francq, Jean-Michel Zakoïan).- Almost sure rate of convergence of maximum likelihood estimators for multidimensional diffusions (Dasha Loukianova, Oleg Loukianova).- Convergence rates for density estimators of weakly dependent time series (Nicolas Ragache, Olivier Wintenberger).- Variograms for spatial max-stable random fields (Dan Cooley, Philippe Naveau, Paul Poncet).- A non-stationary paradigm for the dynamics of multivariate financial returns (Stefano Herzel, Catalin Starica, Reha Tütüncü).- Multivariate non-linear regression with applications (Tata Subba Rao, Gyorgy Terdik).- Nonparametric estimator of a quantile function for the probability of event with repeated data (Claire Pinçon, Odile Pons).

Anbieter: Orell Fuessli CH
Stand: 02.07.2020
Zum Angebot
Dependence in Probability and Statistics
143,00 € *
ggf. zzgl. Versand

This book gives a detailed account of some recent developments in the field of probability and statistics for dependent data. The book covers a wide range of topics from Markov chain theory and weak dependence with an emphasis on some recent developments on dynamical systems, to strong dependence in times series and random fields. A special section is devoted to statistical estimation problems and specific applications. The book is written as a succession of papers by some specialists of the field, alternating general surveys, mostly at a level accessible to graduate students in probability and statistics, and more general research papers mainly suitable to researchers in the field. The first part of the book considers some recent developments on weak dependent time series, including some new results for Markov chains as well as some developments on new notions of weak dependence. This part also intends to fill a gap between the probability and statistical literature and the dynamical system literature. The second part presents some new results on strong dependence with a special emphasis on non-linear processes and random fields currently encountered in applications. Finally, in the last part, some general estimation problems are investigated, ranging from rate of convergence of maximum likelihood estimators to efficient estimation in parametric or non-parametric time series models, with an emphasis on applications with non-stationary data. TOC:Regeneration-based statistics for Harris recurrent Markov chains (Patrice Bertail, Stéphan Clémençon).- Subgeometric ergodicity of Markov chains (Randal Douc, Eric Moulines, Philippe Soulier).- Limit theorems for dependent U-statistics (Herold Dehling).- Recent results on weak dependence for causal sequences. statistical applications to dynamic systems (Clémentine Prieur).- Parametrized Kantorovic-Rubin¿tein theorem and application to the coupling of random variables (Jérôme Dedecker, Clémentine Prieur, Paul Raynaud De Fitte).- Exponential inequalities and estimation of conditional probabilities (V. Maume-Deschamps).- Martingale approximation of non adapted stochastic processes with nonlinear growth of variance (Dalibor Volný).- Almost periodically correlated processes with long memory (Anne Philippe, Donatas Surgailis, Marie-Claude Viano).- Long memory random fields (Frédéric Lavancier).- Long memory in nonlinear processes (Rohit Deo, Mengchen Hsich, Clifford M. Hurvich, Philippe Soulier).- A LARCH (8) vector valued process (Paul Doukhan, Gilles Teyssière, Pablo Winant).- On a Szegö type limit theorem and the asymptotic theory of random sums, integrals and quadratic forms (Florin Avram, Murad S. Taqqu).- Aggregation of doubly stochastic interactive Gaussian processes and Toeplitz forms of U-statistics (Didier Dacunha-Castelle, Lisandro Fermín).- On efficient inference in GARCH processes (Christian Francq, Jean-Michel Zakoïan).- Almost sure rate of convergence of maximum likelihood estimators for multidimensional diffusions (Dasha Loukianova, Oleg Loukianova).- Convergence rates for density estimators of weakly dependent time series (Nicolas Ragache, Olivier Wintenberger).- Variograms for spatial max-stable random fields (Dan Cooley, Philippe Naveau, Paul Poncet).- A non-stationary paradigm for the dynamics of multivariate financial returns (Stefano Herzel, Catalin Starica, Reha Tütüncü).- Multivariate non-linear regression with applications (Tata Subba Rao, Gyorgy Terdik).- Nonparametric estimator of a quantile function for the probability of event with repeated data (Claire Pinçon, Odile Pons).

Anbieter: Thalia AT
Stand: 02.07.2020
Zum Angebot